Conducting Polymers and Their Applications in Sensors: A review
DOI:
https://doi.org/10.32792/jeps.v11i1.87Keywords:
Biosensors, Electrochemical sensors, Chemical Sensors Conducting polymers, onjugated polymersAbstract
Conducting polymers (CPs) have drawn considerable attention because of their economical importance, good environmental stability and electrical conductivity as well as due to their useful mechanical, optical and electronic properties. The present review describes the salient features of conducting polymers as biosensors and chemical sensors (Thermal sensors, Mass sensors, Electrochemical sensors, Optical sensors), their concepts, construction, working, types importance and applications.
References
HODGSON, A. J., et al. Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and
protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’. Supramolecular
Science, 1994, 1.2: 77-83.
KARAGKIOZAKI, V., et al. Bioelectronics meets nanomedicine for cardiovascular implants: PEDOTbased
nanocoatings for tissue regeneration. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013,
9: 4294-4304.
WALLACE, G. G.; SPINKS, G. M.; TEASDALE, P. Conductive electroactive polymers, Technomic
Pub. Co. Inc., USA, 1997, 107-125.
BOROLE, D. D., et al. Electrochemical behaviour of polyaniline, poly (o-toluidine) and their
copolymer in organic sulphonic acids. Materials Letters, 2004, 58.29: 3816-3822.
Mohamoud, M.A. and Hillman, A.R., Electrochimica Acta. In Press, Accepted Manuscript: p. 183.
DOMINIS, Anton J., et al. A de-doping/re-doping study of organic soluble polyaniline. Synthetic
Metals, 2002, 129.2: 165-172.
GAZOTTI JR, W. A.; FAEZ, R.; DE PAOLI, Marco-A. Electrochemical, electrochromic and
photoelectrochemical behavior of a highly soluble polyaniline derivative: poly (o-methoxyaniline) doped
with functionalized organic acids. Journal of Electroanalytical Chemistry, 1996, 415.1-2: 107-113.
ABOUTANOS, V., et al. Electrochemical preparation of chiral polyaniline nanocomposites. Synthetic
Metals, 1999, 106.2: 89-95.
MU, Shaolin. The electrocatalytic oxidation of gallic acid on polyaniline film synthesized in the
presence of ferrocene phosphonic acid. Synthetic metals, 2003, 139.2: 287-294.
MISHRA, Abhishek Kumar. Conducting polymers: concepts and applications. Journal of Atomic,
Molecular, Condensate and Nano Physics, 2018, 5.2: 159-193.
BALINT, Richard; CASSIDY, Nigel J.; CARTMELL, Sarah H. Conductive polymers: Towards a
smart biomaterial for tissue engineering. Acta biomaterialia, 2014, 10.6: 2341-2353.
Journal of Education for Pure Science- University of Thi-Qar
Vol.11, No1 (June, 2021)
Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq
ROTH, Siegmar; FILZMOSER, Maria. Conducting polymers—thirteen years of polyacetylene
doping. Advanced Materials, 1990, 2.8: 356-360.
Roth S., Bleier H., Adv. in Physics, 1987, 36, 385. 27
Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H, Louis E.J., Gau S.C., MacDiarmid
A.G., Phy. Rev. Let., 1977, 39, 1098. 28
Shirakawa H., Louis E.J., MacDiarmid A.G., Chiang C.K Heeger A.J., J. C. S. Chem. Commun, 1977,
, 29
CHIANG, C. K., et al. Conducting polymers: Halogen doped polyacetylene. The Journal of Chemical
Physics, 1978, 69.11: 5098-5104.
DIAZ A.F., Castillo J.I., J. C. S. Chem. Commun., 1980, 397. 31.
TOURILLON G., Garnier f, J. Electroanal. Chem, 1981, 135, 173
DIAZ A.F., Logan J.A., J. Electroanal. Chem., 1980, 111, 111.
IVORY D.M., Miller G.G., Sowa J.M., Shacklette L.W., Chance R.R., Baughman R.H., J. Chem.
Phys., 1979, 71, 1506.
WNEK, Gary E., et al. Electrically conducting derivative of poly (p-phenylene vinylene). Polymer,
, 20.12: 1441-1443.
BIDAN, Gerard. Electroconducting conjugated polymers: new sensitive matrices to build up chemical
or electrochemical sensors. A review. Sensors and Actuators B: Chemical, 1992, 6.1-3: 45-56.
DIAZ, A. F.; BARGON, J. Handbook of conducting polymers. TA Skotheim Ed, 1986, 1: 82-100.
ASAVAPIRIYANONT S., et al., J. Electroanal. Chem, 1984, 229. 38:177,
BULL R.A., et al., J. Electrochem. Soc., 1982, 129, 1009 ,39.
TOURILLON G., Garnier f., J. Polymer. Sci., 1984, 22, 33. 40.
TOO, Chee O., et al. Electropolymerization of 4-(3-pyrrolyl)-4-oxobutyric acid by in situ
potentiodynamic pre-reduction/oxidation. Polymer, 1993, 34.12: 2684-2686.
REYNOLDS, John R.; POROPATIC, Paul A.; TOYOOKA, Rita L. Electrochemical
copolymerization of pyrrole with N-substituted pyrroles. Effect of composition on electrical
conductivity. Macromolecules, 1987, 20.5: 958-961.
SALMÓN, Manuel; BIDAN, Gerard. Chiral polypyrroles from optically active pyrrole
monomers. Journal of the Electrochemical Society, 1985, 132.8: 1897..
OTERO, T. F.; SANTAMARIA, C. Dependence of polypyrrole production on potential. Synthetic
metals, 1992, 51.1-3: 313-319.
EISAZADEH, H., et al. Electrochemical production of conducting polymer colloids. Colloids and
Surfaces A: Physicochemical and Engineering Aspects, 1995, 103.3: 281-288.
LOPEZ, C., et al. Comparison of ion exchange properties of polypyrrole with and without immobilized
dopants by optical beam deflection. Synthetic metals, 1994, 63.1: 73-78.
BUCKLEY, L. J.; ROYLANCE, D. K.; WNEK, G. E. Influence of dopant ion and synthesis variables
on mechanical properties of polypyrrole films. Journal of Polymer Science Part B: Polymer Physics, 1987,
10: 2179-2188.
DALL'OLIO A., Dascola Y., Varacca V., Bocchi V., C. R. Acad Sc. Ser. C., 1968, 267: 433.
DIAZ, A. F_, et al. Electrochemistry of conducting polypyrrole films. Journal of electroanalytical
Chemistry and Interfacial electrochemistry, 1981, 129.1-2: 115-132.
TOURILLON G., Gamier F., J. Electroanal. Chem., 1985, 182:187.
KANAZAWA, K. K., et al. 5ynth. Met., I (1979180), 329.
Journal of Education for Pure Science- University of Thi-Qar
Vol.11, No1 (June, 2021)
Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq
BULL, Randy A.; FAN, Fu‐Ren F.; BARD, Allen J. Polymer Films on Electrodes: VII.
Electrochemical Behavior at Polypyrrole‐Coated Platinum and Tantalum Electrodes. Journal of the
Electrochemical Society, 1982, 129.5: 1009.
GARDINI, G. P. The oxidation of monocyclic pyrroles. In: Advances in Heterocyclic Chemistry.
Academic Press, 1973. p. 67-98.
SUJITH K, Asha AM, Anjali P, et al. Fabrication of highly porous conducting PANI-C composite
fiber mats via electrospinning. Mater Lett 2012; 67: 376–378.
GRANATO F, Bianco A, Bertarelli C, et al. Composite polyamide 6/polypyrrole conductive
nanofibers. Macromol Rapid Commun 2009; 30: 453–458
RAJESH.A.T., KUMAR.D. Recent progress in the development of nano-structured conducting
polymers nanocomposites for sensor applications. Sens. Actuators B 2009, 136: 275–286.
ADHIKARI. B., MAJUMDAR. S. Polymers in sensor applications. Prog. Polym. Sci. 2004, 29: 699–
LANGE.U, et al. Conducting polymers in chemical sensors and arrays. Anal. Chim. 2008, 614: 1–26.
GUPTA. N., et al. Advances in sensors based on conducting polymers. J. Sci. Ind. Res. 2006, 65: 549–
DUVAIL.J.L., et al. Enhanced electroactivity and electrochromism in PEDOT nanowires. Mol. Crys.
Liq. Crys. 2008, 485: 835–842.
JANATA. J, Bezegh A., Anal. Chem., 1988, 60, 62
HULANICKI.A., Glab S., Ingman F, Pure and Appl. Chem., 1991, 2. 63: 1247
CRARY, Selden B. Thermal management of integrated microsensors. Sensors and actuators, 1987,
4: 303-312.
MURAMATSU, H.; DICKS, J. M.; KARUBE, I. Integrated-circuit bio-calorimetric sensor for
glucose. Analytica chimica acta, 1987, 197: 347-352.
WUEBBENHORST. M., Guenther M., Wiss. Z. Tech, Univ. Dresden, 1987, 36,2: 53
Pola D. L., Ottoboni S.L., Wong S.M., Chan J.T., Proc. SPIE Soc. Opt. Eng., 1987, 782 (Infrared Sen.
Sens. Fusion), 61 Nemst W Z. Phys. Chem. 1889, 4, 372.
HEYROVSKY J., Chem Listy, 1922, 16: 256.
THEVENOT, Daniel R., et al. Electrochemical biosensors: recommended definitions and
classification. Pure and applied chemistry, 1999, 71.12: 2333-2348.
LECA‐BOUVIER, Béatrice; BLUM, Loïc J. Biosensors for protein detection: a review. Analytical
Letters, 2005, 38.10: 1491-1517.
LI, Lijie. Recent development of micromachined biosensors. IEEE Sensors Journal, 2010, 11.2: 305-
MELTEM. Y, A Sezai Sarac, J. Textile Research,0(00) 2014
CHOI. J, Lee J, Choi J, et al. Electrospun PEDOT: PSS/ PVP nanofibers as the chemiresistor in
chemical vapour sensing. Synth Met 2010, 160: 1415–1421
HOPKINS, A.R., Lewis, N.S. Detection and classification characteristics of arrays of carbon
black/organic polymer composite chemiresistive vapor detectors for the nerve agent stimulants
dimethylmethylphosphonate and diisopropylmethylphosponate. Anal. Chem. 2001, 73: 884–892.
DOLEMAN, B.J., Lewis, N.S. Comparison of odor detection thresholds and odor discriminablities of
a conducting polymer composite electronic nose versus mammalian olfaction. Sens. Actuators B ,2001,
:41–50.
JIN, G., et al. Polypyrrole filament sensors for gases and vapors. Curr. Appl. Phys. 2004, 4: 366–369.
Journal of Education for Pure Science- University of Thi-Qar
Vol.11, No1 (June, 2021)
Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq
MENEGAZZO, N et al. Discourse on the utilization of polyaniline coatings for surface plasmon
resonance sensing of ammonia vapor. Talanta. 2011, 85 ,3:1369–1375.
CHEN, Y et al. Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole
prepared by vapor phase polymerization. Carbon 2007, 45: 357–363.
SADEK, A.Z., et al. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre
composite. Nanotechnology 2006, 17: 4488–4492.
SADEK, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A polyaniline/WO3 nanofiber
composite-based ZnO/64-YX LiNbO3 SAW hydrogen gas sensor. Synth. Met. 2008, 158, 29–32. 116.
Vijayakumar, N.; Subramanian, E.; Pathinettam Padiyan, D. Conducting polyaniline blends with the
soft template poly (vinyl pyrrolidone) and their chemosensor application. Int. J. Polym. Mater. 2012, 61
,11: 847–863.
SADROLHOSSEINI, Amir Reza, et al. Application of polypyrrole-chitosan layer for detection of Zn
(II) and Ni (II) in aqueous solutions using surface plasmon resonance. International Journal of Polymeric
Materials and Polymeric Biomaterials, 2013, 62.5: 284-287.
PRINGSHEIM, E, et al. Fluorescent beads coated with polyaniline: A novel nanomaterial for sensing
of pH. Adv. Mater. 2001, 13:819–822.
CHOI, J, Lee J, Choi J, et al. Electrospun PEDOT: PSS/ PVP nanofibers as the chemiresistor in
chemical vapour sensing. Synth Met 2010; 160: 1415–1421.
MACAGNANO, A, Zampetti E, Pantalei S, et al. Nanofibrous PANI-based conductive polymers for
trace gas analysis. Thin Solid Films 2011,520: 978–985.
Lin Q, Li Y and Yang M. Polyaniline nanofiber humidity sensor prepared by electrospinning. Sensor
Actuator 2012; 161: 967–972
Haynes AB and Gouma P. Electrospun polyaniline composites for NO2 detection. Mater Manuf
Process 2007; 22: 764–767
BAGHERI, H and Aghakhani A. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive
microextraction. Anal Chim Acta 2012; 713: 63–69.
JI, S, Li Y and Yang M. Gas sensing properties of a composite composed of electrospun poly (methyl
methacrylate) nanofibers and in situ polymerized polyaniline. Sensor Actuator B 2008, 133: 644–649.
JU YW, Park JH, Jung HR, et al. Electrochemical properties of polypyrrole/sulfonted SEBS composite
nanofibers prepared by electrospinning. Electrochim Acta 2007, 52: 4841–4847.
Ji L, Yao Y, Toprakci O, et al. Fabrication of carbon nanofiber-driven electrodes from electrospun
polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J
Power Sources, 2010, 195: 2050–2056.
Pringsheim, E.; Zimin, D.; Wolfbeis, O.S. Fluorescent beads coated with polyaniline: A novel
nanomaterial for sensing of pH. Adv. Mater. 2001, 13, 819–822.
GU, F.X., Zhang, L., Yin, X.F., Tong, L.M. Polymer single-nanowire optical sensors. Nano. Lett.
, 8:2757–2761.
GU, F.X.; Yin, X.F.; Yu, H.K.; Wang, P.; Tong, L.M. Polyaniline= polystyrene single-nanowire
devices for highly selective optical detection of gas mixtures. Opt. Express 2009, 17: 11230–11235.
WANG, X.H, et al. Reversible and efficient photocurrent switching of ultra-long polypyrrole
nanowires. Synth. Met. 2009, 159: 273–276.
WANG, X.H., et al. facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch.
J. Coll. Interf. Sci. 2009, 332: 74–77.
Journal of Education for Pure Science- University of Thi-Qar
Vol.11, No1 (June, 2021)
Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq
Zhu, Y., Feng, L., et al. Chemical dual-responsive wettability of superhydrophobic PANIPAN coaxial
nanofibers. Macromol. Rapid Commun. 2007, 28:1135–1141.
ZHU, Y., et al. Reversible wettability switching of polyaniline- coated fabric, triggered by ammonia
gas. Macromol. Rapid Commun. 2007, 28:2230–2236.
NAMBIAR, S., Yeow, J.T. Conductive polymer-based sensors for biomedical applications. Biosens.
Bioelectron. 2011, 26 ,5: 1825–1832.
AUSSAWASATHIEN, et al. Electrospun polymer nanofibers sensors. Synth. Met. 2005, 154: 37–40.
MICHIRA, I., et al. Synthesis and characterization of sulfonated polyanilines and application in
construction of a diazinon biosensor. Int. J. Polym. Mater. 2011, 60 ,7: 469–489.
LIU, Z.; Wang, J.; Xie, D.; Chen, G. Polyaniline-coated Fe3O4 nanoparticle–carbon-nanotube
composite and its application in electrochemical biosensing. Small: nano micro 2008, 4: 462–466.
DHAND, C, et al. Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem.
Commun. 2009, 11, 1482–1486.
Shin, M.J.; Kim, J.G.; Shin, J.S. Amperometric cholesterol biosensor using layer-by-layer adsorption
technique onto polyaniline-coated polyester films. Int. J. Polym. Mater. ,2013, 62: 140–144
SINGH, R, et al. STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens.
Bioelectron. 2009, 24:2232–2238.
BOOTH, M.A.; Harbison, S.; Travas-Sejdic, J. Development of an electrochemical polypyrrole-based
DNA sensor and subsequent studies on the effects of probe and target length on performance. Biosens.
Bioelectron. 2011, 28 ,1: 362–367.
ZHANG, L.J, etal J. Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors.
Electroanalysis ,2007, 19:870–875.
PENG, H., etal., Synthesis of a functionalized polythiophene as an active substrate for a label-free
electrochemical genosensor. Polym. 2007, 48:3413–3419.
LANGER, J.J, etal. New ‘‘ON-OFF’’-type nanobiodetector. Biosens. Bioelectron. 2009, 24: 2947–
Downloads
Published
Issue
Section
License
The Authors understand that, the copyright of the articles shall be assigned to Journal of education for Pure Science (JEPS), University of Thi-Qar as publisher of the journal.
Copyright encompasses exclusive rights to reproduce and deliver the article in all form and media, including reprints, photographs, microfilms and any other similar reproductions, as well as translations. The reproduction of any part of this journal, its storage in databases and its transmission by any form or media, such as electronic, electrostatic and mechanical copies, photocopies, recordings, magnetic media, etc. , will be allowed only with a written permission from Journal of education for Pure Science (JEPS), University of Thi-Qar.
Journal of education for Pure Science (JEPS), University of Thi-Qar, the Editors and the Advisory International Editorial Board make every effort to ensure that no wrong or misleading data, opinions or statements be published in the journal. In any way, the contents of the articles and advertisements published in the Journal of education for Pure Science (JEPS), University of Thi-Qar are sole and exclusive responsibility of their respective authors and advertisers.