Conducting Polymers and Their Applications in Sensors: A review

Authors

  • Auhood kadhim zaid Department of Chemistry, College of Science, University of Thi-Qar, Iraq
  • Samia Mezhr Merdas Department of Chemistry, College of Science, University of Thi-Qar, Iraq
  • Zainab M. kareem Department of Chemistry, College of Science, University of Thi-Qar, Iraq

Keywords:

Biosensors, Electrochemical sensors, Chemical Sensors Conducting polymers, onjugated polymers

Abstract

Conducting polymers (CPs) have drawn considerable attention because of their economical importance, good environmental stability and electrical conductivity as well as due to their useful mechanical, optical and electronic properties. The present review describes the salient features of conducting polymers as biosensors and chemical sensors (Thermal sensors, Mass sensors, Electrochemical sensors, Optical sensors), their concepts, construction, working, types importance and applications.

References

HODGSON, A. J., et al. Reactive supramolecular assemblies of mucopolysaccharide, polypyrrole and

protein as controllable biocomposites for a new generation of ‘intelligent biomaterials’. Supramolecular

Science, 1994, 1.2: 77-83.

KARAGKIOZAKI, V., et al. Bioelectronics meets nanomedicine for cardiovascular implants: PEDOTbased

nanocoatings for tissue regeneration. Biochimica et Biophysica Acta (BBA)-General Subjects, 2013,

9: 4294-4304.

WALLACE, G. G.; SPINKS, G. M.; TEASDALE, P. Conductive electroactive polymers, Technomic

Pub. Co. Inc., USA, 1997, 107-125.

BOROLE, D. D., et al. Electrochemical behaviour of polyaniline, poly (o-toluidine) and their

copolymer in organic sulphonic acids. Materials Letters, 2004, 58.29: 3816-3822.

Mohamoud, M.A. and Hillman, A.R., Electrochimica Acta. In Press, Accepted Manuscript: p. 183.

DOMINIS, Anton J., et al. A de-doping/re-doping study of organic soluble polyaniline. Synthetic

Metals, 2002, 129.2: 165-172.

GAZOTTI JR, W. A.; FAEZ, R.; DE PAOLI, Marco-A. Electrochemical, electrochromic and

photoelectrochemical behavior of a highly soluble polyaniline derivative: poly (o-methoxyaniline) doped

with functionalized organic acids. Journal of Electroanalytical Chemistry, 1996, 415.1-2: 107-113.

ABOUTANOS, V., et al. Electrochemical preparation of chiral polyaniline nanocomposites. Synthetic

Metals, 1999, 106.2: 89-95.

MU, Shaolin. The electrocatalytic oxidation of gallic acid on polyaniline film synthesized in the

presence of ferrocene phosphonic acid. Synthetic metals, 2003, 139.2: 287-294.

MISHRA, Abhishek Kumar. Conducting polymers: concepts and applications. Journal of Atomic,

Molecular, Condensate and Nano Physics, 2018, 5.2: 159-193.

BALINT, Richard; CASSIDY, Nigel J.; CARTMELL, Sarah H. Conductive polymers: Towards a

smart biomaterial for tissue engineering. Acta biomaterialia, 2014, 10.6: 2341-2353.

Journal of Education for Pure Science- University of Thi-Qar

Vol.11, No1 (June, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

ROTH, Siegmar; FILZMOSER, Maria. Conducting polymers—thirteen years of polyacetylene

doping. Advanced Materials, 1990, 2.8: 356-360.

Roth S., Bleier H., Adv. in Physics, 1987, 36, 385. 27

Chiang C.K., Fincher C.R., Park Y.W., Heeger A.J., Shirakawa H, Louis E.J., Gau S.C., MacDiarmid

A.G., Phy. Rev. Let., 1977, 39, 1098. 28

Shirakawa H., Louis E.J., MacDiarmid A.G., Chiang C.K Heeger A.J., J. C. S. Chem. Commun, 1977,

, 29

CHIANG, C. K., et al. Conducting polymers: Halogen doped polyacetylene. The Journal of Chemical

Physics, 1978, 69.11: 5098-5104.

DIAZ A.F., Castillo J.I., J. C. S. Chem. Commun., 1980, 397. 31.

TOURILLON G., Garnier f, J. Electroanal. Chem, 1981, 135, 173

DIAZ A.F., Logan J.A., J. Electroanal. Chem., 1980, 111, 111.

IVORY D.M., Miller G.G., Sowa J.M., Shacklette L.W., Chance R.R., Baughman R.H., J. Chem.

Phys., 1979, 71, 1506.

WNEK, Gary E., et al. Electrically conducting derivative of poly (p-phenylene vinylene). Polymer,

, 20.12: 1441-1443.

BIDAN, Gerard. Electroconducting conjugated polymers: new sensitive matrices to build up chemical

or electrochemical sensors. A review. Sensors and Actuators B: Chemical, 1992, 6.1-3: 45-56.

DIAZ, A. F.; BARGON, J. Handbook of conducting polymers. TA Skotheim Ed, 1986, 1: 82-100.

ASAVAPIRIYANONT S., et al., J. Electroanal. Chem, 1984, 229. 38:177,

BULL R.A., et al., J. Electrochem. Soc., 1982, 129, 1009 ,39.

TOURILLON G., Garnier f., J. Polymer. Sci., 1984, 22, 33. 40.

TOO, Chee O., et al. Electropolymerization of 4-(3-pyrrolyl)-4-oxobutyric acid by in situ

potentiodynamic pre-reduction/oxidation. Polymer, 1993, 34.12: 2684-2686.

REYNOLDS, John R.; POROPATIC, Paul A.; TOYOOKA, Rita L. Electrochemical

copolymerization of pyrrole with N-substituted pyrroles. Effect of composition on electrical

conductivity. Macromolecules, 1987, 20.5: 958-961.

SALMÓN, Manuel; BIDAN, Gerard. Chiral polypyrroles from optically active pyrrole

monomers. Journal of the Electrochemical Society, 1985, 132.8: 1897..

OTERO, T. F.; SANTAMARIA, C. Dependence of polypyrrole production on potential. Synthetic

metals, 1992, 51.1-3: 313-319.

EISAZADEH, H., et al. Electrochemical production of conducting polymer colloids. Colloids and

Surfaces A: Physicochemical and Engineering Aspects, 1995, 103.3: 281-288.

LOPEZ, C., et al. Comparison of ion exchange properties of polypyrrole with and without immobilized

dopants by optical beam deflection. Synthetic metals, 1994, 63.1: 73-78.

BUCKLEY, L. J.; ROYLANCE, D. K.; WNEK, G. E. Influence of dopant ion and synthesis variables

on mechanical properties of polypyrrole films. Journal of Polymer Science Part B: Polymer Physics, 1987,

10: 2179-2188.

DALL'OLIO A., Dascola Y., Varacca V., Bocchi V., C. R. Acad Sc. Ser. C., 1968, 267: 433.

DIAZ, A. F_, et al. Electrochemistry of conducting polypyrrole films. Journal of electroanalytical

Chemistry and Interfacial electrochemistry, 1981, 129.1-2: 115-132.

TOURILLON G., Gamier F., J. Electroanal. Chem., 1985, 182:187.

KANAZAWA, K. K., et al. 5ynth. Met., I (1979180), 329.

Journal of Education for Pure Science- University of Thi-Qar

Vol.11, No1 (June, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

BULL, Randy A.; FAN, Fu‐Ren F.; BARD, Allen J. Polymer Films on Electrodes: VII.

Electrochemical Behavior at Polypyrrole‐Coated Platinum and Tantalum Electrodes. Journal of the

Electrochemical Society, 1982, 129.5: 1009.

GARDINI, G. P. The oxidation of monocyclic pyrroles. In: Advances in Heterocyclic Chemistry.

Academic Press, 1973. p. 67-98.

SUJITH K, Asha AM, Anjali P, et al. Fabrication of highly porous conducting PANI-C composite

fiber mats via electrospinning. Mater Lett 2012; 67: 376–378.

GRANATO F, Bianco A, Bertarelli C, et al. Composite polyamide 6/polypyrrole conductive

nanofibers. Macromol Rapid Commun 2009; 30: 453–458

RAJESH.A.T., KUMAR.D. Recent progress in the development of nano-structured conducting

polymers nanocomposites for sensor applications. Sens. Actuators B 2009, 136: 275–286.

ADHIKARI. B., MAJUMDAR. S. Polymers in sensor applications. Prog. Polym. Sci. 2004, 29: 699–

LANGE.U, et al. Conducting polymers in chemical sensors and arrays. Anal. Chim. 2008, 614: 1–26.

GUPTA. N., et al. Advances in sensors based on conducting polymers. J. Sci. Ind. Res. 2006, 65: 549–

DUVAIL.J.L., et al. Enhanced electroactivity and electrochromism in PEDOT nanowires. Mol. Crys.

Liq. Crys. 2008, 485: 835–842.

JANATA. J, Bezegh A., Anal. Chem., 1988, 60, 62

HULANICKI.A., Glab S., Ingman F, Pure and Appl. Chem., 1991, 2. 63: 1247

CRARY, Selden B. Thermal management of integrated microsensors. Sensors and actuators, 1987,

4: 303-312.

MURAMATSU, H.; DICKS, J. M.; KARUBE, I. Integrated-circuit bio-calorimetric sensor for

glucose. Analytica chimica acta, 1987, 197: 347-352.

WUEBBENHORST. M., Guenther M., Wiss. Z. Tech, Univ. Dresden, 1987, 36,2: 53

Pola D. L., Ottoboni S.L., Wong S.M., Chan J.T., Proc. SPIE Soc. Opt. Eng., 1987, 782 (Infrared Sen.

Sens. Fusion), 61 Nemst W Z. Phys. Chem. 1889, 4, 372.

HEYROVSKY J., Chem Listy, 1922, 16: 256.

THEVENOT, Daniel R., et al. Electrochemical biosensors: recommended definitions and

classification. Pure and applied chemistry, 1999, 71.12: 2333-2348.

LECA‐BOUVIER, Béatrice; BLUM, Loïc J. Biosensors for protein detection: a review. Analytical

Letters, 2005, 38.10: 1491-1517.

LI, Lijie. Recent development of micromachined biosensors. IEEE Sensors Journal, 2010, 11.2: 305-

MELTEM. Y, A Sezai Sarac, J. Textile Research,0(00) 2014

CHOI. J, Lee J, Choi J, et al. Electrospun PEDOT: PSS/ PVP nanofibers as the chemiresistor in

chemical vapour sensing. Synth Met 2010, 160: 1415–1421

HOPKINS, A.R., Lewis, N.S. Detection and classification characteristics of arrays of carbon

black/organic polymer composite chemiresistive vapor detectors for the nerve agent stimulants

dimethylmethylphosphonate and diisopropylmethylphosponate. Anal. Chem. 2001, 73: 884–892.

DOLEMAN, B.J., Lewis, N.S. Comparison of odor detection thresholds and odor discriminablities of

a conducting polymer composite electronic nose versus mammalian olfaction. Sens. Actuators B ,2001,

:41–50.

JIN, G., et al. Polypyrrole filament sensors for gases and vapors. Curr. Appl. Phys. 2004, 4: 366–369.

Journal of Education for Pure Science- University of Thi-Qar

Vol.11, No1 (June, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

MENEGAZZO, N et al. Discourse on the utilization of polyaniline coatings for surface plasmon

resonance sensing of ammonia vapor. Talanta. 2011, 85 ,3:1369–1375.

CHEN, Y et al. Gas sensitivity of a composite of multi-walled carbon nanotubes and polypyrrole

prepared by vapor phase polymerization. Carbon 2007, 45: 357–363.

SADEK, A.Z., et al. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre

composite. Nanotechnology 2006, 17: 4488–4492.

SADEK, A.Z.; Wlodarski, W.; Shin, K.; Kaner, R.B.; Kalantar-zadeh, K. A polyaniline/WO3 nanofiber

composite-based ZnO/64-YX LiNbO3 SAW hydrogen gas sensor. Synth. Met. 2008, 158, 29–32. 116.

Vijayakumar, N.; Subramanian, E.; Pathinettam Padiyan, D. Conducting polyaniline blends with the

soft template poly (vinyl pyrrolidone) and their chemosensor application. Int. J. Polym. Mater. 2012, 61

,11: 847–863.

SADROLHOSSEINI, Amir Reza, et al. Application of polypyrrole-chitosan layer for detection of Zn

(II) and Ni (II) in aqueous solutions using surface plasmon resonance. International Journal of Polymeric

Materials and Polymeric Biomaterials, 2013, 62.5: 284-287.

PRINGSHEIM, E, et al. Fluorescent beads coated with polyaniline: A novel nanomaterial for sensing

of pH. Adv. Mater. 2001, 13:819–822.

CHOI, J, Lee J, Choi J, et al. Electrospun PEDOT: PSS/ PVP nanofibers as the chemiresistor in

chemical vapour sensing. Synth Met 2010; 160: 1415–1421.

MACAGNANO, A, Zampetti E, Pantalei S, et al. Nanofibrous PANI-based conductive polymers for

trace gas analysis. Thin Solid Films 2011,520: 978–985.

Lin Q, Li Y and Yang M. Polyaniline nanofiber humidity sensor prepared by electrospinning. Sensor

Actuator 2012; 161: 967–972

Haynes AB and Gouma P. Electrospun polyaniline composites for NO2 detection. Mater Manuf

Process 2007; 22: 764–767

BAGHERI, H and Aghakhani A. Polyaniline-nylon-6 electrospun nanofibers for headspace adsorptive

microextraction. Anal Chim Acta 2012; 713: 63–69.

JI, S, Li Y and Yang M. Gas sensing properties of a composite composed of electrospun poly (methyl

methacrylate) nanofibers and in situ polymerized polyaniline. Sensor Actuator B 2008, 133: 644–649.

JU YW, Park JH, Jung HR, et al. Electrochemical properties of polypyrrole/sulfonted SEBS composite

nanofibers prepared by electrospinning. Electrochim Acta 2007, 52: 4841–4847.

Ji L, Yao Y, Toprakci O, et al. Fabrication of carbon nanofiber-driven electrodes from electrospun

polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries. J

Power Sources, 2010, 195: 2050–2056.

Pringsheim, E.; Zimin, D.; Wolfbeis, O.S. Fluorescent beads coated with polyaniline: A novel

nanomaterial for sensing of pH. Adv. Mater. 2001, 13, 819–822.

GU, F.X., Zhang, L., Yin, X.F., Tong, L.M. Polymer single-nanowire optical sensors. Nano. Lett.

, 8:2757–2761.

GU, F.X.; Yin, X.F.; Yu, H.K.; Wang, P.; Tong, L.M. Polyaniline= polystyrene single-nanowire

devices for highly selective optical detection of gas mixtures. Opt. Express 2009, 17: 11230–11235.

WANG, X.H, et al. Reversible and efficient photocurrent switching of ultra-long polypyrrole

nanowires. Synth. Met. 2009, 159: 273–276.

WANG, X.H., et al. facile route to ultra-long polyaniline nanowires and the fabrication of photoswitch.

J. Coll. Interf. Sci. 2009, 332: 74–77.

Journal of Education for Pure Science- University of Thi-Qar

Vol.11, No1 (June, 2021)

Website: jceps.utq.edu.iq Email: jceps@eps.utq.edu.iq

Zhu, Y., Feng, L., et al. Chemical dual-responsive wettability of superhydrophobic PANIPAN coaxial

nanofibers. Macromol. Rapid Commun. 2007, 28:1135–1141.

ZHU, Y., et al. Reversible wettability switching of polyaniline- coated fabric, triggered by ammonia

gas. Macromol. Rapid Commun. 2007, 28:2230–2236.

NAMBIAR, S., Yeow, J.T. Conductive polymer-based sensors for biomedical applications. Biosens.

Bioelectron. 2011, 26 ,5: 1825–1832.

AUSSAWASATHIEN, et al. Electrospun polymer nanofibers sensors. Synth. Met. 2005, 154: 37–40.

MICHIRA, I., et al. Synthesis and characterization of sulfonated polyanilines and application in

construction of a diazinon biosensor. Int. J. Polym. Mater. 2011, 60 ,7: 469–489.

LIU, Z.; Wang, J.; Xie, D.; Chen, G. Polyaniline-coated Fe3O4 nanoparticle–carbon-nanotube

composite and its application in electrochemical biosensing. Small: nano micro 2008, 4: 462–466.

DHAND, C, et al. Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem.

Commun. 2009, 11, 1482–1486.

Shin, M.J.; Kim, J.G.; Shin, J.S. Amperometric cholesterol biosensor using layer-by-layer adsorption

technique onto polyaniline-coated polyester films. Int. J. Polym. Mater. ,2013, 62: 140–144

SINGH, R, et al. STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens.

Bioelectron. 2009, 24:2232–2238.

BOOTH, M.A.; Harbison, S.; Travas-Sejdic, J. Development of an electrochemical polypyrrole-based

DNA sensor and subsequent studies on the effects of probe and target length on performance. Biosens.

Bioelectron. 2011, 28 ,1: 362–367.

ZHANG, L.J, etal J. Polymeric acid doped polyaniline nanotubes for oligonucleotide sensors.

Electroanalysis ,2007, 19:870–875.

PENG, H., etal., Synthesis of a functionalized polythiophene as an active substrate for a label-free

electrochemical genosensor. Polym. 2007, 48:3413–3419.

LANGER, J.J, etal. New ‘‘ON-OFF’’-type nanobiodetector. Biosens. Bioelectron. 2009, 24: 2947–

Downloads

Published

2021-06-10

Issue

Section

Articles