NEW FINDINGS RELATED TO GP- METRIC SPACES

المؤلفون

  • Rihab T. Muhammed
  • Ayed E. Hashoosh

DOI:

https://doi.org/10.32792/jeps.v13i3.333

الملخص

In this study, several conclusions of fixed point theorems for GP-metric spaces are developed using lower
semi-continuous mappings. We also extend Karapinar's findings that depend on partial metric spaces.

المراجع

Altun, I., & Simsek, H. (2008). Some fixed point theorems on dualistic partial metric spaces. Journal of

Advanced Mathematical Studies, 1(1-2), 1-9.[2] Altun, I., Sola, F., & Simsek, H. (2010). Generalized contractions on partial metric spaces. Topology and

its Applications, 157(18), 2778-2785.

Altun, I., & Erduran, A. (2011). Fixed point theorems for monotone mappings on partial metric

spaces. Fixed Point Theory and Applications, 2011(1), 1-10.

Abdeljawad, T., Karapınar, E., & Taş, K. (2011). Existence and uniqueness of a common fixed point on

partial metric spaces. Applied Mathematics Letters, 24(11), 1900-1904.

Aydi, H., Karapınar, E., & Salimi, P. (2012). Some fixed point results in GP-metric spaces. Journal of

Applied Mathematics, 2012.

Banach, S. (1922). Sur les opérations dans les ensembles abstraits et leur application aux équations

intégrales. Fundamenta mathematicae, 3(1), 133-181.

Bukatin, M., Kopperman, R., Matthews, S., & Pajoohesh, H. (2009). Partial metric spaces. The American

Mathematical Monthly, 116(8), 708-718.

Ćirić, L., Samet, B., Aydi, H., & Vetro, C. (2011). Common fixed points of generalized contractions on

partial metric spaces and an application. Applied Mathematics and Computation, 218(6), 2398-2406[9] Haghi, R. H., Rezapour, S., & Shahzad, N. (2011). Some fixed point generalizations are not real

generalizations. Nonlinear Analysis: Theory, Methods & Applications, 74(5), 1799-1803.

Haghi, R. H., Rezapour, S., & Shahzad, N. (2013). Be careful on partial metric fixed point

results. Topology and its Applications, 160(3), 450-454.

Han, S., Wu, J., & Zhang, D. (2017). Properties and principles on partial metric spaces. Topology and

its Applications, 230, 77-98.

Karapinar, E. (2011). Generalizations of Caristi Kirk's theorem on partial metric spaces. Fixed Point

Theory and Applications, 2011(1), 1-7.

Karapınar, E. (2012). Ciric types nonunique fixed point theorems on partial metric spaces. J. Nonlinear

Sci. Appl, 5, 74-83.

Karapınar, E., & Agarwal, R. P. (2013). Further fixed point results on G-metric spaces. Fixed Point

Theory and Applications, 2013(1), 1-14.

Künzi, H. P., Pajoohesh, H., & Schellekens, M. P. (2006). Partial quasi-metrics. Theoretical Computer

Science, 365(3), 237-246.

Matthews, S. G. (1994). Partial metric topology. Annals of the New York Academy of Sciences, 728(1),

-197.

Mustafa, Z., & Sims, B. (2006). A new approach to generalized metric spaces. Journal of Nonlinear and

convex Analysis, 7(2), 289

Oltra, S., & Valero, O. (2004). Banach's fixed point theorem for partial metric spaces.

O'NEILL, S. J. (1996). Partial metrics, valuations, and domain theory. Annals of the New York

Academy of Sciences, 806(1), 304-315.

Valero, O. (2005). On Banach fixed point theorems for partial metric spaces. Applied General

Topology, 6(2), 229-240.

Yazdy, H. G., Zand, M. A., & Radenović, S. (2018). COUPLED FIXED POINT ON Gp-METRIC

SPACES-SYMMETRIC AND ASYMMETRIC. Advances and Applications in Mathematical

Sciences, 17(10), 681-692.

Zand, M. A., & Nezhad, A. D. (2011). A generalization of partial metric spaces. Journal of

Contemporary Applied Mathematics-ISSN: 2222-5498, 1(1).

Zand, M. R. A., & Yazdi, H. G. (2019). Remarks on GP-metric and partial metric spaces and fixed

points results. arXiv preprint arXiv:1906.00395.

Zand, M. R. A., & Nezhad, A.D. (2016). Generalized Gs-submaximal spaces. Acta mathematica

Hungarica, 149(2),274-285.

Zand, M. R. A. (2010). Almost Gp-spaces, jornal of the Korean Mathematical Association, 47(1),215-

.

التنزيلات

منشور

2023-11-04