The Solution of Martínez–Kaabar Abel Integral Equation by Using the Elzaki Transform

Mathematic

Authors

  • Adil Mousa Almanhal Academy of Science

DOI:

https://doi.org/10.32792/jeps.v15i2.690

Abstract

In this work, we have discussed and prove the different properties and theorems of the Martinez–Kaabar fractal–fractional (MK FrFr) Elzaki transform like Linearity property, Convolution theorem property, and the example application to solve of Martínez–Kaabar MK Abel Integral Equation. 

 

References

Tarig M. Elzaki and Eman M. A. Hilal, Solution of telegraph equation by modified of double Sumudu transform “Elzaki transform ” , Mathematical Theory and Modelling, 2 (4) (2012), 95–103.

Emmanuel, F.S. Solution of Integral Equations of Volterra type using the Adomian Decomposition Method (ADM). MathLab J.2020, 7, 16–23.

Deshna Loonker and P. K. Banerji, On the solution of distributional Abel integral equation by

distributional Sumudu transform, Internat. J. Math. Math. Sci., 2011 (2011), 1–8, Article ID 480528

Feng, J.-Q.; Sun, S. Numerical Solution of Volterra Integral Equation by Adomian Decomposition Method. Asian Res. J. Math.2017, 4, 1–12.

Khan, M.; Gondal, M.A. A reliable treatment of Abel’s second kind singular integral equations. Appl. Math. Letter. 2012, 25,1666–1670.

Sharma, N.; Aggarwal, S. Laplace Transform for the Solution of Abel´s Integral Equation. J. Adv. Res. Appl. Math. Stat. 2019, 4,8–15.

Khalil, R.; Al-Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J.

Comput. Appl. Math. 2014, 264,65–70.

Martínez, F.; Kaabar, M.K.A. Martínez–Kaabar Fractal–Fractional Laplace Transformation with Applications to Integral Equations Equations. Symmetry 2024,16, 1483. https://doi.org/10.3390/ sym16111483

Podlubny, I. Fractional Differential Equations, Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA,1999.

Kibas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential

Equations; North-Holland: New York, NY, USA, 2006.

Arshad, S.; Sun, S.; O’Regan, D. Lp-solutions for fractional integral equations. Fract. Calc. Appl. Anal. 2014, 17, 259–276.

Kaewnimit, K.; Wannalookkhee, F.; Orankitjaroen, S. The Solutions of Some Riemann-Liouville

Fractional Integral Equations. Fractal Fract. 2021, 5, 154.

Abdelhakim, A.A. The flaw in the conformable calculus: It is conformable because it is nor fractional. Fract. Calc. Appl. Anal.2019, 22, 245–252.

Abu-Shady, M.; Kaabar, M.K.A. A Generalized Definition of the Fractional Derivative with Applications. Math. Probl. Eng. 2021,2021, 9444803.

Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system. complex system. Chaos Solitons Fractals 2017, 102, 396–406

Martínez, F.; Kaabar, M.K.A. A new generalized definition of fractal-fractional derivative with some applications. Math. Comput.Appl. 2024, 29, 31.

Martínez, F.; Kaabar, M.K.A. On Martínez–Kaabar Fractal–Fractional Volterra Integral Equations of the Second Kind. Fractal Fract. 2024, 8, 466.

Chen, W. Time-space fabric underlying anomalous diffusion. Chaos Solitons Fractals 2006, 28, 923–929.

Chen, W.; Sun, H.; Zhang, X.; Korosak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math.Appl. 2010, 59, 1754–1758.

Downloads

Published

2025-06-01